

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

1/18

PRODUCT HIGHLIGHTS

• High Accuracy up to ±0.1°C

• Very Small Size

• Ready for SMT Assembly

• Multiple Interfaces I2C, SPI

• Adjustment of High Accuracy
Temperature Range on Request

• Low Current Consumption

• Low Self Heating

• Additional Input for External
Temperature Sensor Component

DESCRIPTION

The TSYS01 is a single chip, versatile, new technology temperature sensor. The TSYS01
provides factory calibrated temperature information. It includes a temperature sensing chip
and a 24 bit ∆Σ-ADC. The essence of the digital 24 bit temperature value and the internal
factory set calibration values lead to highly accurate temperature information accompanied
by high measurement resolution.

The TSYS01 can be interfaced to any microcontroller by an I
2
C or SPI interface. This

microcontroller has to calculate the temperature result based on the ADC values and the
calibration parameters.

The basic working principle is:

• Converting temperature into digital 16/24 bit ADC value

• Providing calibration coefficients

• Providing ADC value and calibration coefficients by SPI or I
2
C interface.

nar
Stempel

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

2/18

SPECIFICATION OVERVIEW

Parameter Symbol Conditions Min Typ Max Unit

Operating Supply Voltage VDD stabilized 2.2 3.6 V

High Accuracy Supply Voltage VDD To achieve Acc1 3.2 3.4 V

Supply Current IDD 1 sample per second 12.5 µA

Standby current IS
No conversion, VDD = 3V

T = 25°C
T = 85°C

0.02
0.70

0.14
1.40

µA
µA

Peak Supply Current IDD During conversion 1.4 mA

Conversion time TCONV 7.40 8.22 9.04 ms

Serial Data Clock SPI FSCLK 20 MHz

Serial Data Clock I
2
C FSCL 400 kHz

VDD Capacitor Place close to the chip 100nF

Temperature Measurement Range TRANG -40 125 °C

Accuracy 1 TACC1
-5°C < T < +50°C
VDD = 3.2V – 3.4V

-0.1 +0.1 °C

Accuracy 2 TACC2
-40°C < T < +125°C
VDD = 3.2V – 3.4V

-0.5 +0.5 °C

PSSR
VDD = 2.7 – 3.6

T = 25°C, C = 100nF
 0.2 °C

Temperature Resolution TRES 0.01 °C

Time Constant T

t10-90

T1=25°C T2=75°C

PCB 900mm
2
 x 1.5mm FR4

 9

s

Self Heating SH1 10 samples/s, 60s, still air 0.02 °C

DIGITAL INPUTS (SCLK, SDI, CSB, PS)

Parameter Symbol Conditions Min Typ Max Unit

Input High Voltage VIH VDD = 2.2…3.6V 0.7 VDD VDD V

Input Low Voltage VIL VDD = 2.2…3.6V 0.0 VDD 0.3 VDD V

CS low to first SCLK rising tCSL 21 ns

CS high to first SCLK rising tCSH 21 ns

SDI setup to first SCLK rising TDSO 6 ns

SDI hold to first SCLK rising TDO 6 ns

DIGITAL OUTPUTS (SDA, SDO)

Parameter Symbol Conditions Min Typ Max Unit

Output High Voltage VOH ISource = 1mA 0.8 VDD VDD V

Output Low Voltage VOL ISink = 1mA 0.0 VDD 0.2 VDD V

SDO setup to first SCLK rising tQS 10 ns

SDO hold to first SCLK rising
t
QH 0 ns

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

3/18

CONNECTION DIAGRAMS

USING INTEGRATED SENSOR COMPONENT

The TSYS01 is factory calibrated for usage of the internal temperature sensor component.
Short pin 10 and pin 11 in order to active the internal sensor component.

USING EXTERNAL SENSOR COMPONENT

The TSYS01 can be used for remote temperature measurement. A RTD like the NI1000SOT
(LINK) has to be wired to the pins 10 and 12 while pin 11 is unconnected.

The factory-set calibration parameters are not valid for external sensor application.

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

4/18

PIN FUNCTION TABLE

Pin Name Type Function

1 VSS G Ground

2 CSB DI
SPI: Chip Select (active low)

I
2
C: Address Selection

3 SCLK/SCL DI
SPI: Serial Data Clock
I2C: Serial Data Clock

4 SDI/SDA DIO
SPI: Serial Data Input

I2C: Data Input / Output

5 SDO DO SPI: Serial Data Output

6 – 9 NC --- Not connected / Do not connect

10 INT / EXT DI/AI
Internal / External Sensor Selection

Internal Sensor: Connect Pin10 with Pin11
External Sensor: Connect external Sensor

11 INT DI/AI
Internal / External Sensor Selection

Internal Sensor: Connect Pin11 with Pin10
External Sensor: Leave Unconnected

12 EXT DI/AI
Internal / External Sensor Selection

Internal Sensor: Leave Unconnected
External Sensor: Connect external Sensor

13 – 14 NC --- Not connected / Do not connect

15 VDD P Supply Voltage

16 PS DI Communication protocol select (0=SPI, 1=I
2
C)

SOLDER RECOMMENDATION

Solder reflow process according to IPC/JEDEC J-STD-020D (Pb-Free Process) is
recommended.

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

5/18

MEASUREMENT GUIDELINES

GENERAL

In order to achieve the most accurate temperature measurement results, please notice these
advices

• Use a stabilized and noise free supply voltage

• Place a ceramic capacitor close to the supply pins

• Keep supply lines as short as possible

• Separate TSYS01 from any heat source which is not meant to be measured.

• Avoid air streams if the PCB temperature is meant to be measured.

MEASUREMENT OF AIR TEMPERATURE

• Separate TSYS01 from the remaining electronics by PCB layout.

Milled thermal relief Flex PCB

MEASUREMENT PCB TEMPERATURE

• Connect DAP (die attach pad) to copper layer of the PCB.

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

6/18

INTERFACE DESCRIPTION

PROTOCOL SELECTION

PS pin input level has to be defined in dependence to protocol selection.

• PS = 0 activates SPI.

• PS = 1 activates I
2
C.

I
2
C INTERFACE

A I
2
C communication message starts with a start condition and it is ended by a stop condition.

Each command consists of two bytes: the address byte and command byte.

I
2
C ADDRESS SELECTION

The I
2
C address can be selected by CSB pin.

• CSB=1 then the address is 1110110x.

• CSB=0 the address is 1110111x.
Therefore, two TSYS01 can be interfaced on the same I

2
C bus.

SPI INTERFACE

The serial interface is a 4-wire SPI bus, operating as a slave. CS (chip select), SCLK (serial clock), SDI
(serial data in), and SDO (serial data out) are used to interact with the SPI master.
Communication with the chip starts when CS is pulled to low and ends when CS is pulled to high.
SCLK is controlled by the SPI master and idles low (SCLK low on CS transitions, mode 0).
A mode where the clock alternatively idles high is also supported (mode 3).

COMMANDS

The commands are the same for SPI and I
2
C interface.

There are four commands:

• Reset

• Read PROM (calibration parameters)

• Start ADC Temperature conversion

• Read ADC Temperature result

Command Hex Value

Reset 0x1E

Start ADC Temperature Conversion 0x48

Read ADC Temperature Result 0x00

PROM Read Address 0 0xA0

PROM Read Address 1 0xA2

PROM Read Address 2 0xA4

PROM Read Address 3 0xA6

PROM Read Address 4 0xA8

PROM Read Address 5 0xAA

PROM Read Address 6 0xAC

PROM Read Address 7 0xAE

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

7/18

INTERFACE CODE EXAMPLES

SPI INTERFACE

The code examples shown are meant to be understood as exemplary. The code has to be adjusted with respect
to the used microcontroller in order to work correctly.

/**

* Function: TSYS01_SPI_INIT *

* Input: --- *

* Return: --- *

* Description: Initialization of SPI Port *

***/

void TSYS01_SPI_INIT(void)

{

 // Configure IOs

 SDI_DIR = IN; // SDI = Input

 SDO_DIR = OUT; // SDO = Output

 SCL_DIR = OUT; // SCL = Output

 CSB_DIR = OUT; // CSB = Output

}

/**

* Function: TSYS01_SPI_TRANSFER *

* Input: char cTransmit Byte to be send to TSYS01 *

* Return: char cReceive Byte received from TSYS01 *

* Description: Sends one byte to TSYS01 and read on byte *

* from TSYS01 simultaneously *

***/

char TSYS01_SPI_TRANSFER(char cTransmit)

{

 char cReceive = 0;

 char cBit = 0;

 SDO = 0; SCL = 0; // Reset SPI Lines

 for (cBit = 0; cBit < 8; cBit++)

 {

 cReceive = cReceive << 1; // Shift Receive Register

 SCL = 0; // SCL = 0

 SDO = (cTransmit >> (7 - cBit)); // Outupt next Bit on SDO

 SCL = 1; // SCL = 1

 cReceive = cReceive | SDI; // Input next Bit on SDI

 }

RC3 = 0; RC5 = 0; // Reset SPI Lines

 return cReceive;

}

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

8/18

/**

* Function: TSYS01_SPI_READ_ADC *

* Input: --- *

* Return: cADC[4] via call by reference *

* Description: Reads four bytes of ADC result (24bit) *

***/

void TSYS01_SPI_READ_ADC(char *cADC)

{

 char cByte;

 CSB = 1;

 CSB = 0; // Enable Chip Select

cADC(0) = TSYS01_TRANSFER(0x48); // Start Conversion

 while (SDI == 0); // Wait for Conversion done

 CSB = 1;

 CSB = 0; // Enable Chip Select

 for (cByte = 0; cByte < 4; cByte++)

 {

 cADC[cByte] = TSYS01_TRANSFER(0x00); // READ ADC

 }

 CSB = 1;

}

/**

* Function: TSYS01_SPI_READ_PROM_WORD *

* Input: char cAddress Address of Prom to be read *

** Return: cPPROM[2] via call by reference *

* Description: Reads two byte (on word) of Prom memory *

***/

void TSYS01_SPI_READ_PROM_WORD(char cAddress, char *cPROM)

{

 cAdress = 0xA0 | (cAddress << 1);

 CSB = 1;

 CSB = 0; // Enable Chip Select

 cPPROM[0] = TSYS01_TRANSFER (cAdress); // Command Read PROM

 cPPROM[0] = TSYS01_TRANSFER(0x00); // Read high byte

 cPPROM[1] = TSYS01_TRANSFER(0x00); // Read low byte

CSB = 1;

}

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

9/18

I
2
C INTERFACE

The code examples shown are meant to be understood as exemplary. The code has to be adjusted with respect
to the used microcontroller in order to work.

/**

* Function: TSYS01_I2C_INIT *

* Input: --- *

* Return: --- *

* Description: Initialization of I2C Port *

***/

void TSYS01_I2C_INIT(void)

{

 I2C_SCK_DIR = OUT; // SCK = Output

 I2C_SDA_DIR = OUT; // SDA = Output

}

/**

* Function: TSYS01_I2C_READ_PROM_WORD *

* Input: char cAddress Address of Prom to be read *

** Return: cPPROM[2] via call by reference *

* Description: Reads two byte (on word) of Prom memory *

***/

void TSYS01_I2C_READ_PROM_WORD(char cAddress, char *cPROM)

{

 cAdress = 0xA0 | (cAddress << 1);

 TSYS01_I2C_START(); // Send Start Condition

 TSYS01_I2C_TRANSMIT_BYTE(I2C_ADRESS | I2C_W); // Send I2C-Address, Write

 // Mode

 TSYS01_I2C_GET_ACK(); // Get ACK

 TSYS01_I2C_SEND_BYTE(cAdress); // Send Read PROM command

 // including address to read

 TSYS01_I2C_GET_ACK(); // Get ACK

 TSYS01_I2C_STOP(); // Send Stop Condition

 TSYS01_I2C_START(); // Send Start Condition

 TSYS01_I2C_TRANSMIT_BYTE(I2C_ADRESS | I2C_R); // Send I2C-Address, Read Mode

 TSYS01_I2C_GET_ACK(); // Get ACK

 cPPROM[0] = TSYS01_I2C_RECEIVE_BYTE(void) // Read high byte

I2C_SET_ACK(TRUE); // Set ACK

 cPPROM[1] = TSYS01_I2C_RECEIVE_BYTE(void) // Read low byte

I2C_SET_ACK(FALSE); // Set NACK

TSYS01_I2C_STOP(); // Send Stop Condition

}

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

10/18

/**

* Function: TSYS01_I2C_READ_ADC *

* Input: --- *

* Return: cADC[4] via call by reference *

* Description: Reads four bytes of ADC result (24bit) *

***/

void TSYS01_I2C_READ_ADC(char *cADC)

{

 char cByte;

 // Send command to start ADC conversion

 TSYS01_I2C_START(); // Send Start Condition

 TSYS01_I2C_TRANSMIT_BYTE(I2C_ADRESS | I2C_W); // Send I2C-Address, Write

 // Mode

 TSYS01_I2C_GET_ACK(); // Get ACK

 TSYS01_I2C_SEND_BYTE(0x48); // Start Conversion

 TSYS01_I2C_GET_ACK(); // Get ACK

 TSYS01_I2C_STOP(); // Send Stop Condition

 // Repeat this block until Acknowledge is true

// or wait 10ms for conversion to be done

 TSYS01_I2C_START(); // Send Start Condition

 TSYS01_I2C_TRANSMIT_BYTE(I2C_ADRESS | I2C_W); // Send I2C-Address, Write Mode

 TSYS01_I2C_GET_ACK(); // Get ACK

 TSYS01_I2C_STOP(); // Send Stop Condition

 TSYS01_I2C_START(); // Send Start Condition

 TSYS01_I2C_TRANSMIT_BYTE(I2C_ADRESS | I2C_W); // Send I2C-Address, Write Mode

 TSYS01_I2C_GET_ACK(); // Get ACK

 TSYS01_I2C_SEND_BYTE(0x00); // Send Read ADC command

 TSYS01_I2C_GET_ACK(); // Get ACK

 TSYS01_I2C_STOP(); // Send Stop Condition

 TSYS01_I2C_START(); // Send Start Condition

 TSYS01_I2C_TRANSMIT_BYTE(I2C_ADRESS | I2C_R); // Send I2C-Address, Read Mode

 TSYS01_I2C_GET_ACK(); // Get ACK

 cADC[0] = TSYS01_I2C_RECEIVE_BYTE(void) // Read first byte

I2C_SET_ACK(TRUE); // Set ACK

 cADC[1] = TSYS01_I2C_RECEIVE_BYTE(void) // Read next byte

I2C_SET_ACK(TRUE); // Set ACK

 cADC[2] = TSYS01_I2C_RECEIVE_BYTE(void) // Read next byte

I2C_SET_ACK(TRUE); // Set ACK

 cADC[3] = TSYS01_I2C_RECEIVE_BYTE(void) // Read last byte

I2C_SET_ACK(FALSE); // Set NACK

TSYS01_I2C_STOP(); // Send Stop Condition

}

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

11/18

/**

* Function: TSYS01_I2C_START *

* Input: --- *

* Return: --- *

* Description: Send I2C Start Condition *

***/

void TSYS01_I2C_START(void)

{

 I2C_SCK_DIR = OUT; // SCK = Output

 I2C_SDA_DIR = OUT; // SDA = Output

 I2C_SCK = 1;

 I2C_SDA = 1;

 I2C_SDA = 0;

}

/**

* Function: TSYS01_I2C_STOP *

* Input: --- *

* Return: --- *

* Description: Send I2C Stop Condition *

***/

void TSYS01_I2C_STOP(void)

{

 I2C_SCK_DIR = OUT; // SCK is Output

 I2C_SDA_DIR = OUT; // SDA is Output

 I2C_SCK = 1;

 I2C_SDA = 0;

 I2C_SDA = 1;

}

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

12/18

/**

* Function: TSYS01_I2C_TRANSMIT_BYTE *

* Input: char cTransmit Byte to be send to TSYS01 *

* Return: --- *

* Description: Sends one byte to TSYS01 *

***/

void TSYS01_I2C_TRANSMIT_BYTE(char cTransmit)

{

 char cBit, cMask;

 cMask = 0x80;

 I2C_SCK_DIR = OUT; // SCK is Output

 I2C_SDA_DIR = OUT; // SDA is Output

 I2C_SCK = 0;

 for (cBit = 0; cBit < 8; cBit ++)

 {

 I2C_SDA = 0;

 if ((cTransmit & cMask) != 0) I2C_SDA = 1;

 I2C_SCK = 1;

 I2C_SCK = 0;

 cMask = cMask >> 1;

 }

}

/**

 Function: TSYS01_I2C_RECEIVE_BYTE

 Input: ---

 Return: char cReceive Byte received from TSYS01

 Description: Reads one byte from TSYS01

***/

char TSYS01_I2C_RECEIVE_BYTE(void)

{

 char cReceive, cBit;

 I2C_SCK_DIR = IN; // SCK is Input

 I2C_SDA_DIR = IN; // SDA is Input

 while (I2C_SCK == 0); // Wait for SCL release

 I2C_SCK_DIR = OUT; // SCK is Output

 I2C_SCK = 0;

 I2C_SCK = 1;

 for (cBit = 0; cBit < 8; cBit++)

 {

 cReceive = cReceive << 1;

 I2C_SCK = 1;

 if (I2C_SDA == 1) cReceive = cReceive + 1;

 I2C_SCK = 0;

 }

 return cReceive;

}

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

13/18

/**

* Function: TSYS01_I2C_GET_ACK *

* Input: --- *

* Return: bit bACK Bit represents ACK status *

* Description: Reads Acknowledge from TSYS01 *

***/

bit TSYS01_I2C_GET_ACK(void)

{

 bit bACK;

 I2C_SCK_DIR = OUT; // SCK is Output

 I2C_SDA_DIR = IN; // SDA is Input

 I2C_SCK = 0;

 I2C_SCK = 1;

 bACK = I2C_SDA;

 I2C_SCK = 0;

 return bACK;

}

/**

 Function: TSYS01_I2C_Set_ACK

 Input: bit bACK Bit represents ACK status to be send

 Return: ---

 Description: Reads Acknowledge from TSYS01

***/

void I2C_SET_ACK(bit bACK)

{

 I2C_SCK_DIR = OUT; // SCK is Output

 I2C_SDA_DIR = OUT; // SDA is Output

 I2C_SCK = 0;

 I2C_SDA = bACK;

 I2C_SCK = 1;

 I2C_SCK = 0;

}

nar
Stempel

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

14/18

INTERFACE TRANSMISSIONS

RESET SEQUENCE

The Reset sequence has to be sent once after power-on. It can be also used to reset the device ROM
from an unknown condition.

SPI

I
2
C

PROM READ SEQUENCE

The PROM Read command consists of two parts. First command sets up the system into PROM read
mode. The second part gets the data from the system.
Below examples are sequences to read address 3 (command 0xA6).

SPI

I
2
C

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

15/18

CONVERSION SEQUENCE

A conversion has to be started by sending this command. The sensor stays busy until conversion is
done. When conversion is finished the data can be accessed by using ADC read command

SPI

The last clock will start the conversion which TSYS01 indicates by pulling SDO low. SDO goes high
when conversion is completed.

I
2
C

When the command is sent the TSYS01 stays busy until the conversion is done. All other commands
except the reset command will not be executed during this time. When the conversion is finished the
data can be accessed by sending a ADC read command, when an acknowledge appears from TSYS01.

READ ADC RESULT

After the conversion command the ADC result is read using ADC read command. Repeated ADC read
commands, or command executed without prior conversion will return all 0 as result.

SPI

I
2
C

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

16/18

TEMPERATURE CALCULATION

CALIBRATION PARAMETER

Variable Description Command Size / bit Min Max Example

k4 Coefficient k4 of polynomial 0xA2 16 0 65535 28446

k3 Coefficient k3 of polynomial 0xA4 16 0 65535 24926

k2 Coefficient k2 of polynomial 0xA6 16 0 65535 36016

k1 Coefficient k1 of polynomial 0xA8 16 0 65535 32791

k0 Coefficient k0 of polynomial 0xAA 16 0 65535 40781

TEMPERATURE POLYNOMAL

ADC24: ADC value
ADC16: ADC24 / 256

T / °C = (-2) * k4 * 10

-21 * ADC164 +

 4 * k3 * 10
-16 * ADC163 +

 (-2) * k2 * 10
-11 * ADC162 +

 1 * k1 * 10
-6 * ADC16 +

 (-1.5) * k0 * 10
-2

EXAMPLE

ADC24: 9378708
ADC16: 9378708 / 256 = 36636

T / °C = (-2) * 28446 * 10-21 * 366364 +

 4 * 24926 * 10-16 * 366363 +

 (-2 * 36016 * 10-11 * 366362 +

 1 * 32791 * 10-6 * 36636 +

 (-1.5) * 40781 * 10-2

T / °C = 10.55

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

17/18

DIMENSIONS

BOTTOM VIEW

SIDE VIEW

MARKING

Line Description Example

1 Manufacturer MEAS

2 Product Name TSYS01

3 Pin 1 Dot, Date Code YYWW 1141

Application Note TSYS01

TSYS01 App Note Rev E1.2 www.meas-spec.com 2012-03-07

18/18

ORDER INFORMATION

Please order this product using following:

Part Number Part Description

G-NICO-018 TSYS01 Digital Temperature Sensor

EMC

Due to the use of these modules for OEM application no CE declaration is done.

Especially line coupled disturbances like surge, burst, HF etc. cannot be removed by the
module due to the small board area and low price feature. There is no protection circuit
against reverse polarity or over voltage implemented.

The module will be designed using capacitors for blocking and ground plane areas in order
to prevent wireless coupled disturbances as good as possible.

DEFINITIONS AND DISCLAIMERS

• Application information – Applications that are described herein for any of these products are for
illustrative purpose only. MEAS Deutschland GmbH makes no representation or warranty that such
applications will be suitable for the specified use without further testing or modification.

• Life support applications – These products are not designed for use in life support appliances,
devices, or systems where malfunctions of these products can reasonably be expected to result in
personal injury. MEAS Deutschland GmbH customers using or selling this product for use in such
applications do so at their own risk and agree to fully indemnify MEAS Deutschland GmbH for any
damages resulting from such improper use or sale.

TECHNICAL CONTACT INFORMATION

NORTH AMERICA EUROPE ASIA

Measurement Specialties, Inc.
1000 Lucas Way

Hampton, VA 23666
United States

Phone: +1-800-745-8008
Fax: +1-757-766-4297

Email: sales@meas-spec.com
Web: www.meas-spec.com

MEAS Deutschland GmbH
Hauert 13

D-44227 Dortmund
Germany

Phone: +49-(0)231-9740-0
Fax: +49-(0)231-9740-20

Email: info.de@meas-spec.com
Web: www.meas-spec.com

Measurement Specialties China Ltd.

No. 26, Langshan Road
High-tech Park (North)

Nanshan District, Shenzhen 518057
China

Phone: +86-755-33305088
Fax: +86-755-33305099

Email: info.cn@meas-spec.com
Web: www.meas-spec.com

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for
inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the
manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement
Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does
Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims
any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different
applications. All operating parameters must be validated for each customer application by customer’s technical experts. Measurement
Specialties, Inc. does not convey any license under its patent rights nor the rights of others.

